

Hindcast of Typhoon Jebi (2018) storm surge, wave and flood using a coupled model of surge, wave, wave runup and overtopping

Sooyoul Kim, Tottori University Nobuhito Mori, Tetsuya Takemi, Tomoya Shimura, Hajime Mase Kyoto University Yoko Shibutani: Toyo Corporation Tomohiro Yasuda: Kansai University Sota Nakajo: Osaka City University Junichi Ninomiya: Kanazawa University

2nd International

orkshop on

Contents

- Overview
 - Typhoon Jebi 2018 and its damage
- Modeling surge, wave and flood
 - Modeling storm surge and wave in Osaka Bay
 - * Flooding at Kansai Airport

Overview of Typhoon Jebi 2018

- The most catastrophic tropical cyclone in Japan for five decades
 since Typhoon Nancy (1961) (so call 2nd Muroto Typhoon)
- Landfall on the west coast of Osaka Bay
- historical record-breaking wave and surge heights in the inner bay
 - * max. sea level: 3.29 m
 - * max. surge level: 2.78 m
 - * max. significant wave: 4.72 m

lat 34.164603° lon 133

Type to enter a caption.

Exposure is extremely high below the sea level

KYOTO UNIVERSIT

-5 ~ -2 m

Storm surge barriers in Osaka TC Jebi 2021

Storm surge run-up river

Inundated Kansai Airport

Survey results of flooding depth

- * 39 academics at 14 universities and 2 institutes supported by JSCE
 - coastal flooding mostly due to wave runup and overtopping
 - Icoding depth: more than 6 m
- Survey data: freely available
 - <u>http://www.coastal.jp/ja/</u>
 - 2018 Typhoon Jebi Post-Event Survey of Coastal Damage in the Kansai Region, Japan in Coastal Engineering Journal

Type to enter a caption.

Modeling storm surge and wave in Osaka Bay

Hindcasting surge and wave

- Coupled model of surge, wave and tide (SuWAT, Kim et al. 2015)
 - A wave dependent drag coef.
 - Wave radiation stress
 - Five nested domains downscaling 7,300 m to 90 m
- * Forcing
 - WRF hindcast
 - Parametric TC model

Tuning parametric TC model for this event

- Saturation of momentum transfer coefficient CD in high wind speed region
- Typhoon's feature in the bay
 - Strongly asymmetry wind field above the bay
- Similar work for TC Haiyan 2013
 - * Kim et al. (2015) Ocean Dyn.

Wu (1982):

$$C_D = \begin{cases} 1.2875 \times 10^{-3} & \text{for } U_{10} < 7.5 \text{m/s} \\ (0.8 + 0.065U_{10}) \times 10^{-3} & \text{for } U_{10} > 7.5 \text{m/s} \end{cases}$$

Average radius : 80 Km from satellite images Radius on the right-hand side: 35 Km

2. Sensitivity of Rmax

- Rmax in the bay = 35, 40, 50, 60, 70, 80km
- Wind limit at 20, 25, 30 m/s

Type to enter a caption.

2. Sensitivity of Rmax with wind limit

- Rmax in the bay = 35, 40, 50, 60, 70, 80km
- Wind limit at 20, 25, 30 m/s

Wind Case $R_{\rm max}$ limit (km)25 30 20, 25, 30 35 2 20, 25, 30 3 40 20, 25, 30 50 4 5 20, 25, 30 60 20, 25, 30 70 6 20, 25, 30 80

16

 Determine Wind limit based on Hs at Shionomisaki and Kobe

Select 25 m/s

副取大学

[201821] 09/04 04UTC

Collection opynot objective Collection opynot ocurc Collection opynot ocurc Ogynot objective Data Slo, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Data Japan Hydrographic Association

ter a caption.

4. Estimating Rm by surge and Hs

 Rmax before and after landfall at Osaka Bay= 20, 40, 60, 80, 100 km

Tuned simulation of maximum surge and Hs

Tuned simulation of maximum surge and Hs

- A parametric wind and pressure
 model
 - Rmax = 150 km in the bay,
- Coupled surge and wave model
 - * wave dependent drag capped at 25 m/s,

0

0

00

00

12

Observation

Calculation

12

0.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 0

00

Hs (m)

Flooding at Kansai Airport

Inundation area at Kansai Airport

Flooding due to wave overtopping, runup and overflow

Flood modeling due to wave runup, overtopping and overflow at Kansai Int. Airport

- Integrated model, SuWAT-IFORM (In preparation) :
 - Coupled model of surge, wave and tide (SuWAT, Kim et al. 2015) and
 - Integrated Formula of wave Overtopping and Runup Modeling (IFORM, Mase et al. 2013, 2018)
- Calculation with rough bathymetry and breakwaters
- Recently secured information

on flood was released, so further

detailed simulations will be done

Modeling of inundation by surge and wave overtopping

Flooding results due to wave runup and overtopping at Kansai Int. Airport

KYOTO UNIVERSIT

A test run

- No consideration of overflow
 - With walls with constant of 5 m height
 - Only wave overtopping and runup
- Now studying with detailed information on walls and bathymetry

Summary

- Typhoon Jebi generated historical record-breaking waves and surges on the coast of Osaka Bay
 - max. surge level: 2.78 m
 - max. significant wave height : 4.72 m
- A symmetric & parametric wind and pressure model was used to reproduce Jebi's wind and pressure field
- Observed surges and waves were well simulated with the wave dependent drag capped at 25 m/s by SuWAT
- Flood due to wave overtopping, runup and overflow at Kansai Int. Airport was successfully simulated by SuWAT-IFORM .

